Day 26

EKF for localization



EKF and RoboCup Soccer

® simulation of localization using EKF and 6
landmarks (with known correspondences)

® robot travels in a circular arc of length
90cm and rotation 45deg
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EKF Prediction Step

¢ recall that in the prediction step the
state mean and covariance are
projected forward in time using the
plant model

Hy = g(ut ’ :ut—l)
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EKF Prediction Step
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EKF Prediction Step
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EKF Prediction Step
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EKF Prediction Step
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EKF Prediction Step
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EKF Prediction Step
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EKF Observation Prediction Step

® in the first part of the correction step,
the measurement model is used to
predict the measurement and its
covariance using the predicted state
and its covariance

Z, = h(ﬁt)
St — HtithT +Qt
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EKF Observation Prediction Step
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EKF Observation Prediction Step
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EKF Observation Prediction Step
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EKF Observation Prediction Step
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EKF Observation Prediction Step
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EKF Observation Prediction Step
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EKF Correction Step

® the correction step updates the state
estimate using the innovation vector
and the measurement prediction
uncertainty

Kt — ithTSt_1

H, :ﬁt_I_Kt(zt_zt)
Zt :(I _Kth)zt
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EKF Correction Step
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EKF Correction Step
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EKF Correction Step
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Estimation Sequence (1)

initial EKF
true path position estimated
uncertainty path
ar 0 @
motion model landmark predicted corrected
estimated path measurement position position
event uncertainty uncertainty
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Estimation Sequence (2)

same as previous but with greater measurement uncertainty
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Comparison to GroundTruth
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EKF Summary

® Highly efficient: Polynomial in
measurement dimensionality k and
state dimensionality n:
O(k2:376 + n2)

® Not optimal!
® Can diverge if nonlinearities are large!

® \Works surprisingly well even when all
assumptions are violated!
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